▭:longdivision▭ | imes wostack▭▭ | + wostack▭▭ | - wostack▭▭ | left( | ight) | imes | squarefracsquaresquare |
Generating PDF...
Bạn đang xem: Expand (x + 1)^3 using an identity
x^2
▭:longdivision▭ | imes wostack▭▭ | + wostack▭▭ | - wostack▭▭ | left( | ight) | imes | squarefracsquaresquare |


oldmathrmBasic | oldalphaetagamma | oldmathrmABGamma | oldsincos | oldgediv ightarrow | oldoverlinexspacemathbbCforall | oldsumspaceintspaceproduct | oldeginpmatrixsquare&square\square&squareendpmatrix | oldH_2O | ||
square^2 | x^square | sqrtsquare |
throot | fracmsquaremsquare | log_msquare | pi | heta | infty | int | fracddx |
ge | le | cdot | div | x^circ | (square) | |square| | (f:circ:g) | f(x) | ln | e^square |
left(square ight)^" | fracpartialpartial x | int_msquare^msquare | lim | sum | sin | cos | an | cot | csc | sec |
alpha | eta | gamma | delta | zeta | eta | heta | iota | kappa | lambda | mu |
u | xi | pi | ho | sigma | au | upsilon | phi | chi | psi | omega |
A | B | Gamma | Delta | E | Z | H | Theta | K | Lambda | M |
N | Xi | Pi | P | Sigma | T | Upsilon | Phi | X | Psi | Omega |
sin | cos | an | cot | sec | csc | sinh | cosh | anh | coth | sech |
arcsin | arccos | arctan | arccot | arcsec | arccsc | arcsinh | arccosh | arctanh | arccoth | arcsech |
egincasessquare\squareendcases | egincasessquare\square\squareendcases | = | e | div | cdot | imes | " class="pad Button pad-button-15">> | le | ge | |
(square) | ▭:longdivision▭ | imes wostack▭▭ | + wostack▭▭ | - wostack▭▭ | square! | x^circ | ightarrow | lfloorsquare floor | lceilsquare ceil |
overlinesquare | vecsquare | in | forall | otin | exist | mathbbR | mathbbC | mathbbN | mathbbZ | emptyset |
vee | wedge | eg | oplus | cap | cup | square^c | subset | subsete | superset | supersete |
int | intint | intintint | int_square^square | int_square^squareint_square^square | int_square^squareint_square^squareint_square^square | sum | prod | |
lim | lim _x o infty | lim _x o 0+ | lim _x o 0- | fracddx | fracd^2dx^2 | left(square ight)^" | left(square ight)^"" | fracpartialpartial x |
(2 imes2) | (2 imes3) | (3 imes3) | (3 imes2) | (4 imes2) | (4 imes3) | (4 imes4) | (3 imes4) | (2 imes4) | (5 imes5) | |
(1 imes2) | (1 imes3) | (1 imes4) | (1 imes5) | (1 imes6) | (2 imes1) | (3 imes1) | (4 imes1) | (5 imes1) | (6 imes1) | (7 imes1) |
mathrmRadians | mathrmDegrees | square! | ( | ) | % | mathrmclear |
arcsin | sin | sqrtsquare | 7 | 8 | 9 | div |
arccos | cos | ln | 4 | 5 | 6 | imes |
arctan | an | log | 1 | 2 | 3 | - |
pi | e | x^square | 0 | . | old= | + |
mathrmsimplifymathrmsolve:formathrminversemathrmtangentmathrmlineSee Allareaasymptotescritical pointsderivative domaineigenvalueseigenvectorsexpandextreme pointsfactorimplicit derivativeinflection pointsinterceptsinverselaplaceinverse laplacepartial fractionsrangeslopesimplifysolve fortangenttaylorvertexgeometric testalternating testtelescoping testpseries testroot test
Before learning the (x+1)^3 expand formula, let us recall what is a binomial. A binomial is an algebraic expression with exactly two terms. We can expand (x+1)^3 by multiplying (x+1)(x+1)(x+1) manually. Let us learn the (x+1)^3 expand formula.

What Is the (x+1)^3 Formula?
The (x+1)3 formula is a special algebraic identity formula used to solve cube of a specialtype of binomial. The (x+1)3 formula can be easily expanded by multiplying (x+1) thrice. Khổng lồ simplify the (x+1)3 formula further, after multiplying we just combine the lượt thích terms andthe lượt thích variables together. Finally, we will arrange our algebraic expressionsaccording lớn the increasing order of the exponential power.
(x+1)3=x3 + 3x2 + 3x + 1
The expansion of formula(x+1)^3 is(x+1)3= (x+1)(x+1)(x+1)
In our next heading we will see the further simplification of the (x+1)3formula.
Proof of(x+1)^3 Formula
The(x+1)3formula can be verified or proved by multiplying (x + 1) three times, i.e,
(x+1)3=(x+1)(x+1)(x+1)(x+1)3=
Therefore,(x+1)3=x3 + 3x2 + 3x + 1

Great learning in high school using simple cues
Indulging in rote learning, you are likely to lớn forget concepts. With surfriderli.org, you will learn visually and be surprised by the outcomes.
Book a không tính phí Trial Class
Examples on(x+1)^3 Formula
Example 1:Find the expansion of(a+1)^3.
Solution:
Using the(x+1)^3 expansion formula:
(x+1)3=x3+3x2+ x+ 1
Comparing & putting the values,
(a+1)3= a3+3a2+ a + 1
Answer: The expansion of(a+1)^3 isa3+3a2+ a + 1.
Example 2:Expand (1+t)^3.
Solution:
Using (x+1)^3 expansion formula:
(x+1)3=x3+3x2+ x+ 1
Comparing and putting the values,
(1+t)3= t3+3t2+ t + 1
Answer: The expansion of(1+t)^3is t3+3t2+ t + 1.
Example 3:Simplify (2x +1)3 using(x+1)^3 expansion formula
Solution:
Using (x+1)^3 expansion formula:
(x+1)3=x3+3x2+ x+ 1
Comparing and putting the values,
(2x +1)3= (2x)3+3(2x)2+ 2x + 1= 8x3 + 12x2+ 2x + 1
Answer:(2x + 3)3=8x3 + 12x2+ 2x + 1
FAQs on (x+1)^3 Formula
What Is the Expansion of (x +1)3Formula?
(x +1)3formula is read as x plus 1 whole cube. Its expansion is expressed as(x +1)3=x3+3x2+ x+ 1.
What Is the(x +1)3Formula in Algebra?
The (x +1)3formula is one of the importantalgebraic identities. It is read as xplus 1 whole cube. Its (x +1)3formula is expressed as(x +1)3=x3+3x2+ x+ 1.
How lớn Expand the(x +1)3Formula?
To expand (x +1)3formula we need tomultiply (x + 1) three timesas shown below:
Step1: (x+1)3= (x+1)(x+1)(x+1)Step 2:How lớn Use the(x +1)3Formula Give Steps?
The following steps are followed while using(x +1)3formula.
Xem thêm: Các hệ thức lượng trong tam giác, hot, 9đ, hệ thức lượng trong tam giác vuông